2 research outputs found

    Accelerating Scientific Computing Models Using GPU Processing

    Get PDF
    GPGPUs offer significant computational power for programmers to leverage. This computational power is especially useful when utilized for accelerating scientific models. This thesis analyzes the utilization of GPGPU programming to accelerate scientific computing models. First the construction of hardware for visualization and computation of scientific models is discussed. Several factors in the construction of the machines focus on the performance impacts related to scientific modeling. Image processing is an embarrassingly parallel problem well suited for GPGPU acceleration. An image processing library was developed to show the processes of recognizing embarrassingly parallel problems and serves as an excellent example of converting from a serial CPU implementation to a GPU accelerated implementation. Genetic algorithms are biologically inspired heuristic search algorithms based on natural selection. The Tetris genetic algorithm with A* pathfinding discusses memory bound limitations that can prevent direct algorithm conversions from the CPU to the GPU. An analysis of an existing landscape evolution model, CHILD, for GPU acceleration explores that even when a model shows promise for GPU acceleration, the underlying data structures can have a significant impact upon that ability to move to a GPU implementation. CHILD also offers an example of creating tighter MATLAB integration between existing models. Lastly, a parallel spatial sorting algorithm is discussed as a possible replacement for current spatial sorting algorithms implemented in models such as smoothed particle hydrodynamics

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead
    corecore